
Creative Software Design

7 – Standard Template Library

Yoonsang Lee

Fall 2020

Midterm Exam

• No midterm exam for this course.

• I hope we can have an offline final exam.

• For students taking exams next week, we'll have no

lecture & labs next week.

Today's Topics

• Intro to Template (briefly)

• STL (Standard Template Library)

• Containters

– std::vector, std::list

– std::stack, std::queue

– std::set, std::map

• Iterator

• std::string

Template

● Functions and classes can be "templated".

● This allows a function or class to work on many different data types

without being rewritten for each one.

An example of class template

Standard Template Library (STL)

● STL defines powerful, template-based, reusable components.

● A collection of useful template for handling various kinds of data

structure and algorithms

○ Containers: data structures that store objects of any type

○ Iterators: used to manipulate container elements

○ Algorithms: operations on containers for searching, sorting and

many others

Containers

• Sequential container, Container adaptor, Associative container

• Sequential container

– Elements are accessed by their "position" in the sequence.

– vector: fast insertion at end, random access

– list: fast insertion anywhere, sequential access

– deque (double-ended queue): fast insertion at either end, random access

• Container adapter

– “Adapting” the interface of underlying container to provide the desired
behavior.

– stack: Last In First Out

– queue: First In First Out

Containers

• Associative container

– Elements are referenced by their key and not by their absolute
position in the container, and always sorted by keys.

– map: a mapping from one type (key) to another type (value)

– set: add or delete elements, query for membership…

• There are a few more containers in STL, but this course
covers only the most popular ones.

std::vector - a resizable array

std::vector - a resizable array

std::vector - a resizable array

● You can make a vector of strings or other classes.

#include <string>

#include <vector>

using namespace std;

struct Complex { double real, imag; /* ... */ };

// ...

vector<string> vs;

for (int i = 0; i < 10; ++i) cin >> vs[i];

// vector(size, initial_value)

vector<string> vs2(5, "hello world");

vector<Complex> v1(10);

vector<Complex> v2(10, Complex(1.0, 0.0));

Complex c(0.0, 0.0);

v2.push_back(c);

for (int i = 0; i < v2.size(); ++i) {

cout << v2[i].real << "+" << v2[i].imag << "i" << endl;

}

std::vector - a resizable array

● Sometimes you may want to use a vector of pointers.

#include <vector>

using namespace std;

class Student;

vector<Student*> vp(10, NULL);

for (int i = 0; i < vp.size(); ++i) {

vp[i] = new Student;

}

// After using vp, all elements need to be deleted.

for (int i = 0; i < vp.size(); ++i) delete vp[i];

vp.clear();

std::vector - a resizable array

std::vector

• Element are stored in contiguous storage, like an array.

• Random access (by index): Fast access to any element

• Fast addition/removal of elements at the end of the

sequence.

• Much more flexible and powerful than array. From

now on, use std::vector instead of array.

– https://www.stroustrup.com/bs_faq2.html#arrays

https://www.stroustrup.com/bs_faq2.html#arrays

References for STL

• std::vector

– http://www.cplusplus.com/reference/vector/vector/

• STL containers

– http://www.cplusplus.com/reference/stl/

• You can find documents for any other STL features

in the links in the above pages.

http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/stl/

Iterator

• Iterator: a pointer-like object pointing to some element
in a container.

• Iterators provide a generalized way to traverse and
access elements stored in a container.

– can be ++ or -- (move to next or prev element)

– dereferenced with *

– compared against another iterator with == or !=

• Iterators are generated by STL container member
functions, such as begin() and end().

std::vector with iterator

std::vector with iterator

#include <vector>

#include <iostream>

using namespace std;

int main(void) {

// vector(sz)

vector<int> v(10);

for (int i = 0; i < v.size(); ++i) v[i] = i;

// begin(), end()

for (vector<int>::iterator it = v.begin(); it != v.end(); ++it) {

cout << " " << *it;

}

// Output: 0 1 2 3 4 5 6 7 8 9

// rbegin(), rend()

for (vector<int>::reverse_iterator it = v.rbegin(); it != v.rend(); ++it) {

cout << " " << *it;

}

// Output: 9 8 7 6 5 4 3 2 1 0

}

Meaning of begin(), end(), rbegin(), rend()

Quiz #1

• Go to https://www.slido.com/

• Join #csd-hyu

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked as "attendance".

https://www.slido.com/

Concept of Linked List

● Singly linked list: A node consists of the data and a link to the next node.

● Doubly linked list: with links to prev. & next node.

Concept of Linked List: insert

Concept of Linked List: erase

std::list

• Implemented as a doubly-linked list.

– Non-contiguous storage.

• Sequential access

– One should iterate from a known position (like begin()

or end()) to access to some element.

• Fast addition/removal of elements anywhere of the

sequence.

std::list – an insert and erase example

iter =

2

3

An iterator that points to the first of the newly inserted
elements.

std::list – a remove example

An iterator pointing to the new location of the element that
followed the last element erased by the function call.

Concept of Stack : Last In First Out

std::stack - example

Concept of Queue : First In First Out

std::queue - example

Other Vector-like Containers

● List, stack, queue, and deque (double-ended queue).

vector list stack queue deque

Random access operator[]

at()

- - - operator[]

at()

Sequential access front()

back()

front()

back()

top() front()

back()

front()

back()

Iterators begin(), end()

rbegin(), rend()

begin(), end()

rbegin(), rend()

- - begin(), end()

rbegin(), rend()

Adding elements push_back()

insert()

push_front()

push_back()

insert()

push() push() push_front()

push_back()

insert()

Deleting elements pop_back()

erase()

clear()

pop_front()

pop_back()

erase()

clear()

pop() pop() pop_front()

pop_back()

erase()

clear()

Adjusting size resize()

reserve()

resize() - - resize()

std::map

• Contains key-value pairs with unique keys.

• Associative: Elements are referenced by their key,

and always sorted by keys.

• Accessing with keys is efficient.

std::map - example

std::set

• Contains unique keys.

• Associative: Elements are referenced by their key,

and always sorted by keys.

• Accessing with keys is efficient.

std::set - example

#include <set>

using namespace std;

set<int> s;

for (int i = 0; i < 10; ++i) s.insert(i * 10);

for (set<int>::const_iterator it = s.begin(); it != s.end(); ++it) {

cout << " " << *it; // s: 0 10 20 30 40 50 60 70 80 90

}

cout << s.size();

cout << s.empty();

set<int>::iterator it, it_low, it_up;

it = s.find(123); // it == s.end()

// s: 0 10 20 30 40 50 60 70 80 90

it = s.find(50); // ^it

s.clear(); // s:

Quiz #2

• Go to https://www.slido.com/

• Join #csd-hyu

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked as "attendance".

https://www.slido.com/

Iterator again

• Iterators provide a generalized way to traverse and

access elements stored in a container.

• Iterators serve as an interface for various kinds of

containers.

• Passing and returning iterators makes an algorithms

more generic, because the algorithms will work for

any containers.

Algorithm

● Many useful algorithms are available

● sort

● min, max, min_element, max_element

● binary_search

std::sort

void sort(RandomAccessIterator first, RandomAccessIterator last);
Void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp)

std::min, std::max,

std::min_element, std::max_element

std::string - constructor

● In C++, STL provides a powerful string class.

• Returns a pointer to a null-terminated string array

representing the current value of the string object.

(Recall) std::string - c_str()

#include <string>

std::string str = "hello world";

const char* ptr = str.c_str();

printf("%s\n", ptr);

// ...

std::string str1 = str + " - bye world";

assert(str1 == "hello world - bye world");

assert(str.length() > 10);

assert(str[0] == 'h');

str[0] = 'j';

str.resize(5);

assert(str == "jello");

// check out http://www.cplusplus.com/reference/string/string/

// resize(), substr(), find(), etc.

ptr

str

h e l l o w o r l d \0

(Recall) std::string - input

std::string str;

std::cin >> str; // read a word (separated by a space, tab, enter)

std::getline(cin, str); // read characters until the default

// delimiter '\n' is found

std::getline(cin, str, ':'); // read characters until the delimiter

// ':' is found

(Recall) std::string - input

• Note that std::string automatically resize to the

length of target string.

std::string - input from file

std::string - find

#include <iostream>

#include <string>

using namespace std;

int main() {

string str("There are two needles in this haystack with needles.");

string str2("needle");

size_t found;

if ((found = str.find(str2)) != string::npos) {

cout << "first 'needle' found at: " << int(found) << endl;

}

str.replace(str.find(str2), str2.length(), "preposition");

cout << str << endl;

return 0;

}

size_t find(const string& str, size_t pos = 0) const;

size_t find(char c, size_t pos = 0) const;

[from http://www.cplusplus.com/]

first 'needle' found at: 14

There are two prepositions in this haystack with needles.

std::string - substr

#include <iostream>

#include <string>

using namespace std;

int main() {

string str = "We think in generalities, but we live in details.";

// quoting Alfred N. Whitehead

string str2 = str.substr(12, 12); // "generalities"

size_t pos = str.find("live"); // position of "live" in str

string str3 = str.substr(pos); // get from "live" to the end

cout << str2 << ' ' << str3 << endl;

}

string substr(size_t pos = 0, size_t n = npos) const;

[from http://www.cplusplus.com/]

generalities live in details.

Quiz #3

• Go to https://www.slido.com/

• Join #csd-hyu

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked as "attendance".

https://www.slido.com/

Next Time

• Labs in this week:

– Lab1: Assignment 7-1

– Lab2: Assignment 7-2

• No lecture & labs next week!

• Next lecture (the week after next):

– 8 - Inheritance, Const & Class

